
Two Diet Plans for Fat PDF
Thomas A. Phelps and Robert Wilensky

University of California, Berkeley
phelps@cs.berkeley.edu, wilensky@cs.berkeley.edu

ABSTRACT
As Adobe's Portable Document Format has exploded in popularity
so too has the number PDF generators, and predictably the quality
of generated PDF varies considerably. This paper surveys a range
of PDF optimizations for space, and reports the results of a tool
that can postprocess existing PDFs to reduce file sizes by 20 to
70% for large classes of PDFs. (Further reduction can often be
obtained by recoding images to lower resolutions or with newer
compression methods such as JBIG2 or JPEG2000, but those
operations are independent of PDF per se and not a component of
the results reported here.) A new PDF storage format called
"Compact PDF" is introduced that achieves for many classes of
PDF an additional reduction of 30 to 60% beyond what is possible
in the latest PDF specification (version 1.5, corresponding to
Acrobat 6); for example, the PDF 1.5 Reference manual shrinks
from 12.2MB down to 4.2MB. The changes required by Compact
PDF to the PDF specification and to PDF readers are easily
understood and straightforward to implement.

Categories and Subject Descriptors
E.3 [Coding and Information Theory]: Data compaction
and compression

General Terms
Algorithms, Measurement, Documentation, Languages

Keywords
PDF, Compression, Multivalent, Compact PDF

MOTIVATION
It is uncontroversial to state that Adobe's Portable Document
Format (PDF) is the de facto way final form digital documents are
distributed today. There are many reasons for this, including high
technical quality and the free Acrobat viewer available on all
major platforms. However, as our results will show, PDFs are
often 50% larger than they need to be and in some cases 1000%
times larger. There are several reasons for this.

In the first place, there are now innumerable PDF generators,
including Adobe Distiller, Adobe PDFWriter, Adobe PDF
Library, Aladdin Ghostscript, Corel PDF Engine, CL-PDF,
DaVince C++ Class Library, Apache FOP, HPA image bureau,
Oracle PDF driver, Panda, PDFlib, ClibPDF Library, dvipdfm,
dvips + GNU Ghostscript, htmldoc, iSEDQuickPDF iText,
pdfTeX, and various OCR engines. Predictably not every one

generates the absolutely most space efficient PDF file. Initially
Adobe software was the primary way to generate PDF. First the
user "printed" to a PostScript file, which was the universal way of
communicating with printers and therefore nearly every
application could produce PostScript, and then "distilled" the
PostScript to PDF with Adobe Distiller. Distiller is engineered by
the company that invented PostScript and has a long history of
expertise with graphics- and font-related applications, and thus the
user could depend on a certain level of quality. Rather than
distilling, it is better for an application to directly write PDF in
order to better capture the source document's semantics and in
order to take advantage of technical features in PDF that are not in
PostScript, such as gradients. However, if a PDF generator is just
one of many features of a large application, then as a shipping
deadline approaches refinements of a basically working
subsystem are not high priority.

Second, even for those PDF generators and libraries primarily
concerned with PDF, the amount of work to track the PDF
specification is enormous and ongoing. Adobe regularly
improves PDF by adopting new technology, such as JBIG2 over
CCITT Fax, JPEG2000 over JPEG, and Flate over LZW, and
compressible object streams over individual uncompressed top-
level objects. The increasing sophistication of PDF is reflected in
PDF Reference — which as of version 1.5 stands at 1,100 pages,
and incorporates by reference several other large, complex
specifications such as JPEG2000. Moreover, some PDF features
interact with one another and multiply complexity. For example,
on top of page building command streams, there is compression,
optional encryption, and optional painstaking "linearization",
which orders content so that the first page can be viewed quickly
over a slow network.

Third, regardless of however well PDF generators track the PDF
specification, there remain billions of legacy PDFs. While all
PDFs are forward compatible with later specifications (another
primary reason for the popularity of PDF), they use older, less
efficient technology (which of course was all that was available at
the time of document generation). In almost all cases, these new
PDFs cannot be regenerated from source, since one usually
receives many more PDFs than one generates (just like email) and
the sources are not available.

We have developed a tool that optimizes PDF space requirements.
It postprocesses existing PDFs, working with all PDF generators,
inefficient and efficient, old and modern. It centralizes expertise
in the back end so that general applications can concentrate on
translating their visuals to clean PDF. Or, since an integrated
system is often preferable, applications can compare their file
sizes and see if significant improvements are possible, and if so
applications can examine the tool's output to identify optimization
opportunities. Furthermore, since the tool postprocesses PDF, it
operates on legacy PDF, bringing the benefits of modern various
compression algorithms as well as other new techniques.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’03, November 20-22, 2003, Grenoble, France.

Copyright 2003 ACM 1-58113-724-9/03/0011…$5.00.

This paper surveys a range of PDF optimizations for space, and
utilizes the tool to measure their effectiveness. PDF was designed
more than 10 years ago, or almost seven Moore's Law doublings
ago, and we consider optimizations that are newly technically
practical.

THE STRUCTURE OF PDF
In order to understand the ways PDF can be optimized, a high-
level familiarity with the PDF file format is needed. PDF is
relatively simple. A brief header of the form %PDF-m.n marks
the file as PDF of version m.n, a number at the very end of the
file points to a cross-reference table, the cross-reference table
holds the exact byte offsets of PDF objects, and everything else is
one of those objects. Objects can be of the usual types found in
programming languages, including strings, integers and real
numbers, and arrays. A core data type is the dictionary, which is
in effect a hash table. Dictionaries and arrays can nest objects,
including other dictionaries and arrays. Objects are identified by
number, and objects can refer to other objects by number by
indirect references. Arbitrary byte sequences can be embedded in
streams, which are dictionaries with metadata (length,
compression type, data type) followed by the data bytes. Streams
are used for image data, embedded fonts, and arbitrary embedded
files, among others uses. Page contents are a sequence of
PostScript-like textual commands that are stored in streams and
that are executed to build the page as a series of graphical
operations. Only streams can be compressed. PDF 1.5 [2] also
introduced cross-reference streams, which are more flexible and
compressible than previous cross-reference tables.

So as not to overwhelm the reader, we introduce refinements to
this basic description as they become relevant.

OPTIMIZATIONS
Techniques
PDF is a rich format and few PDFs take advantage of every
aspect: many PDFs have JPEG images, some have JPEG2000
images, some are scanned paper CCITT FAX images lightly
wrapped in PDF data structure, some have no images; some have
embedded Type 1 fonts, some have embedded TrueType, some
rely on the "core 14" set of fonts guaranteed by Acrobat; some
have an additional SGML-like structure tree, but most do not; a
few have embedded video; HTML conversions have many
hyperlinks, but many have no links; and so on. Thus,
optimizations specific to images or fonts or annotations can have a
great effect on PDFs that use those features, but zero effect on the
rest.

We consider only optimizations guaranteed to be safe, with no
loss of quality or information. With lossy image compression
such as JPEG, one can achieve very high compression by
sacrificing quality. Macintosh OS X uses PDF as its imaging
model, but the generated PDF files do not use JPEG compression.
One PDF compression product achieves most of its effect by
compressing image raw samples into JPEG, but JPEG
compression loses information and a program must at best rely on
heuristics or manual intervention to decide whether the loss is
significant or not. While PDF structure information, which is not
related to the visual appearance, is relatively new and as yet
seldom used, a program cannot automatically determine whether
the structure is meaningful or unintended bloat. PDFs can have

many named destinations, which are similar to HTML anchors; if
not all of them are referenced within the document, the unused
may be referenced from other PDFs or instead be due to
overzealous labeling (as by FrameMaker). Such optimizations
can be enabled with explicit switches to our tool and other PDF
optimization tools have target "profiles" that specify the
combinations that are appropriate, but none is used in the results
reported in this paper.

From among the many possible PDF space optimizations, the
following are those that are most effective on most document
instances.

Use a modern compression algorithm
PDF is fundamentally a text-based format, writing objects as
human-readable text, as opposed to a binary format with carefully
defined bit fields. However, compression is essential for
reasonable file sizes. Originally the general-purpose compression
algorithm was LZW, but this has been superceded by the superior
performance of Flate [7]. Only PDF streams can be compressed;
the new PDF 1.5 of May 2003 introduces object streams, which
collect one or more non-streams into streams, which can then be
compressed. This is especially useful for hyperlinks and
annotations, of which there can be many and which share much of
the same content such as dictionary entries (/Subtype /Link,
/Border [0 0 0]).

Modern compression of images can also result in large space
savings. Images can be compressed with a variety of formats, and
PDF 1.4 and PDF 1.5, respectively, introduced JBIG2 for bitonal
images (such as black and white scanned paper) and JPEG2000
for continuous-tone images (such as color photographs).
However, image compression is independent of PDF per se:
armed with an image compressor, applying it to PDF is a simple
matter of rewriting the PDF image's data stream; the other objects
in the PDF are unaffected, except their file offsets in the cross
reference. For that reason and due to the lack of an available
JBIG2 compressor, image recompression is not considered in the
results below (which is to say, further compression is possible).
Also, as mentioned above, recompressing images can be lossy and
therefore problematic for automatic postprocessing concerned
about information fidelity.

Remove useless or archaic data
Often slides for a talk repeat a logo image from slide to slide.
Inefficient PDF generators produce a separate copy of the logo for
each page, rather than using indirect references to share a single
copy. PDFs can have tens or hundreds of thousands of objects of
sometimes deeply nested structure, and for a PDF generator to
catch potential duplicate objects can involve considerable
bookkeeping.

PDFs can be incrementally updated, with new objects such as
annotations added cheaply to the end of the file. Existing objects
are superceded by giving a new object the same number as the
object it replaces. While it can be useful in some occasions to
retain old versions of objects so as to trace the updates to the PDF,
revisions to a document are generally done to some other source
such as a Microsoft Word document, and old objects are usually
dead weight.

Adobe has carefully tended PDF and Acrobat so that PDFs are
always upwardly compatible. However, some constructs used in
PDF 1.0 of 10 years ago are archaic in PDF 1.5. PDFs can
contain page thumbnail images, but current processors can
compute thumbnails rapidly on the fly. Older versions of Acrobat
used ProcSets summarizing the kind of the content of each
page (painting and graphics state, text, color image) in order to
know what PostScript preambles to send to the printer, but
ProcSet are now obsolete. For early versions of PDF it was
important to deliver raw PDFs over 7-bit ASCII channels such as
e-mail, and PDF included ASCII filters to wrap binary streams,
although if the communications program translated line endings
the cross reference table could be corrupted anyway (though in a
way that could be repaired). Today ASCII transmission is
ensured externally to the PDF (e.g., uuencode wrapping for email
attachments), making ASCII encoding within PDFs obsolete.

Low-level Writing
The process of transcribing PDF data structures to disk in PDF
syntax is simple, but without attention to seemingly insignificant
matters much space can be wasted. As the PDF Reference
Manual 1.2 says, "omit unnecessary spaces". Many generators
insert a space where a syntax metacharacter alone would delimit
parse tokens, and write linefeed-newline pairs where one would
do. For example, the PDF Reference 1.4 has 30979 objects, and
writing space only where necessary saved 747K out of an 8.95MB
file. The inefficiency is only an average of tens of bytes per
object, but over possibly tens of thousands of objects, the result is
bloating by a thousand cuts.

PDFs as a whole can be written linearly, so documents of any
length can be written in a single pass with limited memory usage.
Stream data can be written as it is generated, with its length given
as an indirect forward reference to a number object that is written
after the data. This was important when microcomputer memories
were measured in kilobytes, but today US$650 buys a PC with
256MB memory, as compared to a very large single compressed
object which may be 1MB. The overhead for writing the length
as an indirect object is the cost of an indirect reference (e.g.,
31699 0 R) plus the object wrapper for the number itself
(31699 0 obj 24947 endobj), plus 20 bytes for that
object in the cross-reference table, or a total of 40-45 bytes per
stream. The PDF 1.5 Reference does not write streams lengths as
separate objects, and by doing so it saves this amount 1357 times,
for about 55 KB. Some PDF generators apparently think this old
convention is mandatory and continue writing stream lengths as
separate objects — sometimes before the stream data, negating the
original reason.

Other examples of small inefficiencies that add up are writing
explicit values that are identical to their default values, and
repeating identical settings such as bounding boxes across pages,
rather than pushing them higher in the page tree where they can be
inherited by individual pages and shared across pages. Also, it is
well known that the Flate compression algorithm can be set to run
fast and produce sub-optimal compression ratios or run slower for
best compression. Moreover, even at the best compression setting
it can produce different results. Sometimes compressing all the
data in a single Flate "block" works best, but sometimes not:
according to a co-author of ZLIB and gzip, "more frequent blocks
cost more overhead for the code descriptions, but may improve
compression by adapting more rapidly to changing data" [1].

PDF 1.5's object streams can compress away a lot of the
inefficiency as a space-slash costs very slightly more than a single
slash, but only if the object stream groups many objects with
similar inefficiencies. At this writing the one PDF 1.5 document
found in the wild, produced by Adobe InDesign 2.0.2 using
Adobe PDF Library 5.0, had many streams with 100 component
objects but also many with only a single object.

Tool
The tool used to compute the compression results below performs
the following optimizations:

• detects and eliminates duplicate objects
• recodes LZW to Flate
• strips off ASCII encoding
• collects objects into PDF 1.5 object streams in groups of 200,

which are then compressed with Flate
• writes cross-reference table as a compressed cross-reference

stream
• writes objects in compact syntax
• removes old versions of objects
• removes obsolete objects such as thumbnails and ProcSet
• inlines small objects such as stream lengths
• reference counts objects and eliminates unused objects, such as

single-use objects that were inlined
• omits default values
• shrinks gaps in cross-reference table due to duplicate, inlined or

deleted objects. Objects and indirect references overall are
renumbered accordingly.

However:

• A document's linearization dictionary, if any, which enables
fast viewing of the first page over a network, is lost. This
information must be recomputed when a PDF is rewritten, and
it is a limitation of the tool that it does not do this. Thus, for
those documents that had linearization, compression savings is
overstated by a couple thousand bytes.

• The tool is written in Java, but Java’s built-in Flate library does
not provide control over flushing Flate “blocks”; in all cases
exactly one block is produced. While in the great majority of
cases the compression produced is identical to that with
multiple blocks, in rare cases it is considerably worse.

Results
We ran our compression tool on 1,054 PDF files. Compression
ratios ranged from 0% to 99%. By contrast, all HTML is
basically text sprinkled with a fixed set of tags and attributes, so
one would expect a relatively constant compression ratio, of
something somewhat better than plain text as the tags and
attributes increase the incidence common strings. The
compression ratio depends heavily on the PDF features used, the
age of the PDF generator, and the quality of the PDF generator. It
would be of little use to report one number for the average
compression ratio since that number is so heavily dependent on
the individual characteristics of the given PDF tested. For
example, on the papers from the Document Engineering 2002
symposium as retrieved from the ACM Digital Library, we
observe the following compression ratios: 12%, 37%, 16%, 23%,
22%, 14%, 22%, 18%, 15%, 38%, 51%, 35%, 39%, 53%, 7%,
44%, 12%, 5%. However, if we group by PDF creator code,

rough trends emerge: the generator dvips is associated with 37%,
16%, 14%, 22%, 18%, 38%, 51%, 35%, 39%, 44%, 5%; while
Microsoft Word has 12%, 23%, 14%, 22%, 18%, 7%, 12%.
(These compression ratios depend on technology introduced after
the creators and is not an evaluation of these PDF generators.)
Also, for PDF compression there is no common benchmark data
set like the common text corpus collections in Information
Retrieval.

Thus, for the PDF results below report representative ratios (not
the best observed) for classes of similar documents. Compression
obtained by a straight gzip on the full PDF is reported as a
baseline. Documents given with a six-digit number are taken

from the PDF Database [16], a common collection of about 500
PDFs used to test PDF parsers, and repurposed here.

Compression correctness was validated by a tool developed for
this purpose that detects structural differences between to PDFs.
Two PDFs are structurally equivalent if they render identically
and have the same auxiliary data, such as outline trees. Non-
structural details include object numbering and dictionary key
order. The structural equivalence tool operates by reading the
original and compressed versions from files into semantic objects,
normalizing data streams to remove compression and ASCII, and
finally comparing data structure trees object by object.

Class Representative Document Original Size
(in bytes)

Simple gzip Compression Compression with
PDF 1.5

%
savings

Thinking in PostScript (PDF 1.0) 895156 442025 520066 353086 60%

stpope_siren7 (PDF 1.1) 2750544 1733318 2135095 2128779 22%early PDF
Old PDFs have ASCII wrappers and LZW for general-purpose compression. The more efficient Flate compression was
not introduced until PDF 1.2. Older PDFs all have ProcSets, which were required until PDF 1.4.

unit1 899172 677053 879590 870968 3%

p231-hall 105595 98578 96937 95895 9%
image
dominated or
high quality
generator

If a document is dominated by images and a high quality PDF generator is used, little additional compression is possible.
"p231-hall" is typical of the ACM Digital Library's older conference proceedings, which has scanned paper as Group 4
FAX and minimally wrapped it in PDF data structures.

Core API Reference 10422916 4536514 7050445 4325589 58%

Java Language Specification 2.0 4419906 1622296 2120720 1229672 72%

collection of Tcl 8.4.2 documentation 8135892 3784950 6234650 3697416 54%

PDF Reference 1.5 draft 12765416 7399695 10735266 7160361 43%
FrameMaker /
hyperlinks

PDFs with many hyperlinks used to be expensive. With object streams, the size of the PDF, which is directly readable, is
approximately the same size as that produced by running general-purpose gzip (Flate) compression, which requires a
separate decompression step before reading. FrameMaker generates many links and many named destinations (anchors),
most of a name like G10.1047755. Names are verbose but inside object streams compress very well as they often
share 9 or 10 of their 11 letters. These documents also have many pages, each with a page dictionary with entries for
Parent, Type (of value Page), which also compress well. (Adobe distributed the PDF Reference 1.5 in advance of the
Acrobat 6.0 required to read the object streams it describes.)

Hong 12256915 3036573 1350493 1203121 90%

Navigation 234532 49368 50571 40826 82%
duplicate
objects /
PDFWriter Slideshows with repeated logo images, each instance of which is in the PDF, compress well as these duplicates are

eliminated.

iccv01 1740164 371088 401840 391774 77%

000344 385149 368779 338686 328004 14%Improving
generators

Ghostscript 5.10 did not compress images in "iccv01"; Ghostscript 7.05 does in "000344". However, the legacy 5.10
document is still at its bloated size.

000503 146841 30119 38099 35573 75%

000019 851990 689302 446132 447999 47%

new PDF
generators

"Creating PDFs from Microsoft Office
Documents" / cmccue_pdfmsofice

3786960 3628342 952234 911080 75%

New software usually has other concerns of higher priority than optimized PDF. The Apache Formatting Object
Processor v0.14, which generated "000503", does not compress content streams. The Oracle PDF Driver, of "000019",
does not compress content stream, and uses ASCII85 and LZW on bilevel images rather than Group 4 FAX. Even the
"dot-oh" software from Adobe used in "Creating PDFs", Adobe PDF Library 5.0 and Adobe InDesign 2.0, is inefficient,
arguing for a postprocessor that centralizes optimization expertise.

UNIX Haters 3639172 2803546 2538438 2424777 33%

Real World Go Live 18530903 15692402 16463032 15930290 14%

Journal of Mundane Behavior v3 #3 2165348 1167063 1515347 1014721 53%

Java Developers Journal v7 #3 13280252 11762178 12002568 11702274 11%

Seybold Report on Internet Publishing
v3 #12 / 0899ip0312

1763859 1629102 1593828 1537953 12%

book,
magazine,
newsletter

It is increasingly popular to distribute full books, magazines, and newsletters as PDFs, since full content and appearance
are preserved. A new issue can lead to a network storm in which many people try to download the work at the same time.
It is very important to distributors to reduce the size as much as possible.

AnnualReport 393768 351250 371247 362547 7%
Image
compressors The CVision PDFCompressor 2.0 mainly applies JBIG2 compression. The results of this compressor can further be

reduced by 7% with general techniques.

OPTIMIZING BEYOND ADOBE'S PDF
SPECIFICATION: "COMPACT PDF"
It has been more than 10 years since the definition of PDF,
when, as Jim King writes [9], the machine of the day had 640KB
of memory and a 80286 processor. Unsurprisingly, some PDF
design decisions made under those constraints are no longer
relevant. New design decisions assuming 256MB of memory
and a 1GHz processor can yield an additional 30 to 60% space
savings, while retaining the speed and ease of use the user
expects. The few changes required to the PDF specification are
easily understood, straightforward to implement, and mesh well
with other PDF features such as encryption and linearization.
We collectively call our proposed features Compact PDF.

This section proposes three ways to achieve significant
additional compression beyond what is possible in today's PDF
1.5, measures the effectiveness of the techniques, and considers
how to integrate the techniques with standard PDF.

Compact Technique 1: Bulk compression of
entire PDF
PDF has always had compression, such as general-purpose LZW
and image-specific JPEG, and has regularly introduced new
compression technology, such as Flate over LZW and
JPEG2000 over JPEG. However, one feature of PDF has
prevented more effective use of this compression: its page
independence. One problem with PostScript for onscreen
reading was that to guarantee correct output for a randomly
chosen page, one had to generate all the preceding pages,
because PostScript was a programming language and settings
made early in the program could affect pages arbitrarily far
downstream. One important property of PDF is that every page
is independent of the others so that arbitrary pages can be read
directly and in any order. Related to but separate from
programmatic page independence, every page is compressed
independently of the others.

Unfortunately, separate compression is terrible for LZW and
Flate. These algorithms work by computing a "dictionary" of
strings (byte sequences), and when a sequence has been seen
before it can be replaced by a short code that points into the
dictionary. Separate compression means that the dictionary has
to be reconstructed for each page. Instead, we propose
compressing all pages together in a single stream for maximum
benefit from shared dictionaries. It for this reason that
compressed PostScript (.ps.gz) is often smaller than the PDF
equivalent. This same technique is used in a different context to
compress Java class files [14]. For a pure text document, this
yields an additional 40% compression over the best possible in
PDF 1.5.

The Compact stream is somewhat similar to PDF 1.5 object
streams in that numerous objects are written to the same stream.
However, object streams cannot embed other streams, which is
essential for sharing across pages.

Perhaps surprisingly, compression is generally increased by
putting images, which are already compressed, into the single
large page stream. Sometimes images will share a similar color
palette; for JPEG images this is embedded in each JPEG
bitstream and not shared, but if these JPEGs are put into the
same compression stream, they in effect are shared and produce
additional compression. When images are different from one
another and are effectively noise to the general-purpose
compressor, compression degrades by usually less than 1%.

Compact Technique 2: Type 1 font compression
Fonts can be embedded in a PDF in order to guarantee that they
are available to the recipient. Acrobat guarantees a "core 14" set
of common fonts and missing fonts can be approximated, but if
exact appearance is important or the font has unusual glyphs (as
symbolic fonts and TeX fonts do), then fonts should be
embedded. It is a common practice to subset fonts, including
only those characters that are actually used in the text. Beyond

that, one important class of font, Adobe's Type 1 [4], can be
further compressed.

Type 1 fonts are encrypted. Type 1 font encryption was broken
long ago, and now Adobe publishes the encryption method.
However, Type 1 fonts embedded in a PDF are still encrypted,
presumably so that they can be directly transmitted to a
PostScript interpreter that expects to find them this way. Inside
the Compact stream this acts like random noise and degrades
compression. (In fact, part of the encryption scheme inserts
literally random bytes into the font.)

Furthermore, an official part of a Type 1 font is a set of 512 zero
bytes that trail the glyph definitions. PDF has a means to make
this implicit, but incredibly some PDF generators write this out.

Compact PDF rewrites individual objects, and this is especially
effective for embedded Type 1 fonts. On writing the Compact
format, Type 1 encryption is stripped out (and the random bytes
cleared to space characters). At the very least fonts compress by
14% as they use 8 bits per byte over the previous 7, and all fonts
make the 512 zero bytes implicit. On top of this, fonts are
susceptible to general-purpose compression for the first time.

Compact Technique 3: More effective
compression algorithm: BZip2
For general purpose compression, Flate is very popular. It is
very fast for compression and uncompression on all types of
data and is free of patents. It compresses better than LZW, is
the basis for the popular gzip utility, and is the most
commonly use compression method in the popular .zip
format.

For text data, however, the BZip2 compression algorithm [15]
usually achieves better compression ratios, often much better.
BZip2 is well suited to PDF because, underneath its
compression and encryption, PDF is a text-based format. PDF
data structure objects and page command streams are both
written as text, as opposed to some binary format with carefully
defined bit fields.

However, during compression BZip2 is slower than Flate,
sometimes much slower. In one case, some preprocessing of the
data is needed in order to avoid a worst case for BZip2. Raw
image samples, with the same long byte sequences found
throughout a long data stream, provoke inordinately long
compression times. Fortunately, this special case is easily
identified, and the data can be compressed by Flate instead.
Otherwise compression is often several times slower than for
Flate, but since this is a one-time operation, it is worth the cost.
Uncompression is slower than Flate as well, but is usually
competitive.

Results
As for the previous results, typical compression is reported for
classes of documents, with representative documents providing
detail. The base measurements are the original size of the PDF,
the size obtainable by a simple gzip, and the smallest size
possible that remains compliant with PDF 1.5. Compare that to
what the Compact format can achieve. The Compact numbers
are reported in subcategories for Flate and BZip2 compression
applied to the large Compact stream. The final column reports
the amount of space wasted by PDF 1.5 over the Compact
format; this number is the inverse of compression savings, for
instance, if an additional 50% compression is possible by using
Compact rather than PDF 1.5, then twice as many Compact
PDFs fit into the same space, or in other words PDF 1.5 wastes
+100% of the size of Compact.

Class Representative
Document

Original
Size

Simple
gzip

Compressed
PDF 1.5
compliant

Compact /
Flate

Compact /
BZip2

savings
Compact
over
Original

inefficiency
PDF 1.5 over
Compact

EyesWideShut 138495 99334 80119 46881 35291 74% +127%

pure text
Pure text PDFs, such as this movie script, benefit greatly from sharing compression dictionaries across pages. From a best
case PDF 1.5 compliant size of 80K, an additional compression down to 35K is possible, meaning that PDF 1.5 is 127% larger
than necessary to transmit the same information. BZip2 gives better compression than Flate, 35K vs 46K. As expected this
technique dramatically outperforms a simple gzip across pages, which although it uses Flate compression, finds individual
page streams already compressed and cannot share compression dictionaries across pages.

Acrobat Core API
Reference

10422916 4536514 4325589 1675981 1176719 88% +267%

DPS.refmanuals.TK 893511 835930 621789 129662 108398 87% +473%

Effective Java Chapter 6 /
blockch6

189279 173854 125229 43384 36432 80% +243%

OpenDoc_Cookbook 2895271 2648687 1953324 428929 384460 86% +408%

PostScript Language
Reference Manual Level 3

7769823 3687298 3126790 2208720 1670895 78% +87%

template /
reference
manual /
catalog

PDF Reference 1.5 draft 12765416 7399695 7160361 5499771 4420156 65% +61%

collection of Tcl 8.4.2
documentation

8135892 3784950 3697416 2016017 1420939 82% +160%

Reference manuals and catalogs often have a strong design template repeated from page to page. PDF generators should
extract this repetition into a PDF Form XObject (as opposed to an interactive fill-in form), which is similar to a program
subroutine. Most do not, or rather most applications do not cooperate with PDF generators in a way that makes determination
and separation of the template efficient. Instead, the template is repeated on every page. By compressing all these pages
together, the template has effectively zero cost after the first copy. The felicitous result is that enormous compression of often
80% is achieved on the largest documents.

brookings 198200 135778 144179 93114 86184 56% +67%

gentlesgml 486807 207922 173811 88395 68139 59% +91%

riggs 252283 199579 221601 168102 138022 45% +60%
embedded
Type 1

These three documents were written in TeX. TeX fonts are non-standard and, in contrast to other outline fonts, different point
sizes are different fonts. This can result in quite a few embedded fonts: 16 embedded fonts for brookings, 3 for gentlesgml, 21
for riggs. The comparative compression sizes leaving the fonts encrypted are: brookings 124182 bytes encrypted vs 86184
unencrypted, gentlesgml 82175 vs 68139, riggs 252283 vs 138022. Brookings and gentlesgml were generated by pdfTeX,
which at least as of version 13.d needlessly included 512 zero bytes for each font, whereas riggs was generated by
Ghostscript, which is not wasteful.

UNIX Haters 3639172 2803546 2424777 2240801 2013136 44% +20%

Real World Go Live 18530903 15692402 15930290 13153002 12689475 31% +25%

Journal of Mundane
Behavior v3 #3

2165348 1167063 1014721 939968 738558 65% +37%

Java Developers Journal
v7 #3

13280252 11762178 11702274 10727017 10140968 23% +15%

Seybold Report on Internet
Publishing v3 #12 /
0899ip0312

1763859 1629102 1537953 1331265 1338916 24% +14%

book,
magazine,
newsletter

Mass distributed documents with mixed content can achieve a double digit reduction in size.

Unit1 899172 677053 870968 842570 331741 63% +163%

ManningJDK14 10168352 8871949 8498854 8410687 2913370 71% +191%
images with
similar
color maps

A surprising result is that — on occasion — BZip2 finds compression in images that eludes Flate.

Practicality
Undoubtedly the technique of compressing an entire document
in one large stream was considered by Adobe’s PDF architects.
After all, before PDF a common distribution format was
compressed PostScript, which in essence is the same. However,
with today's hardware, it is newly practical. The key is that a
Compact PDF can rapidly be transformed into a standard PDF.
Decompression and Type 1 font re-encryption, and
recompression of individual independent objects can be done
very quickly. For PDFs of up to an original size of, roughly, 1
MB — which is the majority of PDFs — Compact-to-standard
rewriting for a Flate-compressed Compact can be done in less
than a second (on a 500MHz Pentium III). Once rewritten, PDF
viewers and tools can operate normally, without modification.
Depending on the PDF library, the standard version can be held
in memory (since it is still small) or written to disk.

The largest PDF in our tests, at 15MB, took 30 seconds to
rewrite. Even as a rare worst case, that is too long to wait if the
PDF is heavily referenced, but PDF viewers can imitate web
browsers which cache expensive fetches over the network, and
simply cache expensive Compact PDF rewritings. Cacheing can

automatically adjust to improving memory and processor, and
eliminate that step: if the rewriting takes less than a second, do
not write to disk. This technique relies on the two different
ways PDF pages are independent: it still relies on programmatic
page independence, but random access is sacrificed for
compression, with the insight that random access can be rapidly
reconstructed on demand.

Integrating with Standard PDF
How much work would authors of PDF viewers, generators, and
manipulation libraries have to undertake to support Compact
PDF? Not much, we claim. How well does Compact PDF
integrate with the various features of standard PDF such as
encryption and linearization? Very well, we claim. Individual
users can interoperate between Compact PDF and standard PDF
already, by rewriting Compact to standard, working with the
viewer or tool, and converting back. Of course this is awkward
and PDF software should be Compact aware.

Supporting Compact PDF requires reading objects from a stream
and writing them in standard format, including the byte offsets
for the cross-reference table. Any software engineer that

understands PDF reading simply has to reverse the process to
write. We have adapted our PDF viewer [11] to recognize
Compact PDF. It required about 100 lines of code, in addition
to about 300 lines from a PDF writing library. The viewer
transparently rewrites to standard format upon reading a PDF.
As well, we have written a number of PDF manipulation tools,
and because all of these use the same parsing engine as the
viewer, they are in fact unaware that a PDF may be in Compact
format as the parser completely masks this fact.

Compact PDF is compatible with PDF encryption, incremental
writing, and linearization. Syntactically, Compact PDF is valid
PDF. Existing viewers cannot find the page streams and other
objects to display, but PDF manipulation libraries see only a few
unfamiliar dictionary keys, which they ignore, a very large
stream in one object, and an unusually sparse cross-reference
table. From the point of view of encryption, the Compact
stream and other objects written outside the stream in standard
format are ordinary objects available for encryption.

PDF can incrementally add content by writing the new objects at
the end and writing a new cross-reference table for the new
objects and a hook that points to the previous cross-reference
table — which is to say, in the standard way incremental content
is added. This is sufficient for PDF manipulation libraries.
Viewers operating on Compact-aware parser engines could fetch
objects through the engine unaware of whether the PDF was
rewritten, and write annotations to the original Compact PDF.

Putting the entire document into a single stream defeats the
purpose of linearized PDF, which organizes PDF content so that
the objects relevant to the first page appear first and that objects
are otherwise clustered so that random access to pages requires a
minimum and contiguous additional fetch over a slow network
connection. However, one could leave the objects relating to the
first page out of the Compact stream; this suffers some loss of
compression, but regains the fast viewing of the first page over
the network. If one wants random access to every page, the
Compact format is not suitable, but if the Compact version is
80% smaller, perhaps the cost of transmitting the remaining
pages is acceptable.

FUTURE WORK
Other compression algorithms besides Flate and BZip2, of
which there are multitudes, could be used. Adobe has chosen
open standards for important reasons and maintaining this
eliminates many compression algorithms. In practical terms,
algorithm implementations should run fast and produce smaller
output than what is already achieved. The tension is always
between new technology and universal readability of the result
and costs of maintaining support in the future.

Based on the Compact format, a few other techniques could
deliver significant space savings for some classes of PDF. The
Compact format compresses the commonality across objects in
the same PDF, and one could consider identifying commonality
across PDF documents. For example, when converting to
Compact format, any embedded fonts could be stripped out and
placed in a shared collection. When converting back to standard
format, the fonts could be simply referred to if they are available
through the OS, or the fonts could be re-embedded if the PDF is
to be redistributed. Font subsetting and duplicate font names of

what are in fact different fonts make this nontrivial, but it is
likely to be practical for TeX documents, which have a
canonical set of fonts and which often embed them.

One Compact technique decrypts and compresses embedded
Type 1 fonts. Adobe has a "Compact Font Format" (CFF), a
binary format, which may or may not be significantly more
compact than compressed decrypted Type 1. CFF defines a
default set of character encodings, a savings that could be
applied to embedded Type 1 as well.

Some information in a PDF is redundant. In the page tree,
parents point to children and children point to parents. In the
outline graph, siblings point forward and backward to one
another. Object types given by an explicit attribute are often
implicit from their position in the structure and their other
attributes. All this redundant information could be stripped out
before compression in the Compact stream and reconstituted
upon rewriting to standard format. A surprising result of a
preliminary investigation shows that this can degrade BZip2
compression. That is, less data compresses to a larger size than
does this data with additional data. It is surmised the reason is
that the additional data, such as type attributes, help BZip2 sort
the data into larger homogeneous regions, which then compress
better overall.

The Compact format sweeps up gains from several more
sophisticated compression techniques — from one perspective
the simple single stream compression is dishearteningly
effective. For example, if duplicate top-level objects were not
already eliminated, Compact would have achieved the same
space savings. One could consider identifying page templates
and separating them into shared XObjects, but Compact already
compresses them across pages. Such duplicate identification
and separation techniques remain useful for PDF 1.5
compatibility and for possible non-compression-centric
document analysis.

In addition to page templates, another source of repetition in
page streams is embedded vector clip art (not bitmap images).
Clip art should be separated out in a Form XObject, and
multiple instances of the art scaled and positioned with different
affine transforms. However, in practice clip art seems to be
embedded in the page stream for every instance. Moreover the
coordinates of the line art are "flattened" to the final positions,
rather than keeping identical coordinates and relying on affine
transforms, and therefore is resistant even to compression across
pages. It would be taxing to find clip art as a program would
have to look for streams of, say, 100 commands that are
congruent to another stream of 100 commands through some
affine transform, from among the millions of commands in the
entire PDF.

Compact PDF ‘s large Compact stream with almost all
document content is fundamentally opposed to Linearized
format which serves pieces of the document over the network.
As mentioned, one compromise is to place the first few pages in
Linearized format and the rest in Compact. Another possible
compromise is to cluster small groups of pages together for
better compression while still limiting the data size for
incremental serving.

Our compression tool could integrate other research. For
instance, other researchers have developed a technique to
replace TeX bitmap Type 3 fonts with better-looking outline
Type 1 versions [13], and it would be convenient for users to
integrate such useful technology in one place.

RELATED WORK
Several people have assembled lists of ways to reduce PDF size.
Adobe's PDF Reference Version 1.2 [3] of 1996 devotes 30
pages to "Optimizing PDF Files" (while some recommendations
are no longer as relevant, unfortunately this section has been
removed from more recent editions). Adobe's Dov Isaacs gives
a popular talk [8] that recommends settings in Acrobat for
different goals (screen vs print, PDF 1.4 compatiblity vs new
PDF 1.5 features) and to work around bugs in other software.
Shlomo Perets presents 11 ways to "reduc[e] the size of your
PDFs" [12].

Acrobat 6.0 has an "Optimize PDF" function. It collects objects
into object streams (and can resample and recompress images).
However it seems not to eliminate duplicate objects and not to
perform well on large PDFs (larger than a few megabytes).

Apago's PDFshrink [5] was originally designed for Macintosh
OS X, which uses PDF as its imaging model but, as of version
10.2 “Jaguar”, does not apply JPEG compression. PDFshrink
applies JPEG compression and eliminates duplicate objects.
Presumably it will add PDF 1.5 object streams in a future
version. Close inspection of PDFs compressed by PDFshrink
suggests that they their duplicate object algorithm has a bug. In
a test of 24 randomly chosen PDFs, our compression tool
(restricted to PDF 1.4) produced smaller PDFs in every case and
usually ran twice as fast.

metaobject's PdfCompress [10] is a Mac OS X application that
compresses color images with JPEG and black and white images
with CCITT Fax Group 4. CVision's CVista PdfCompressor [6]
compresses black and white images with JBIG2.

AVAILABILITY
The tool that generates PDF 1.5-compatible compressed PDFs
and Compact PDFs is available at
http://www.cs.berkeley.edu/~phelps/Multivalent.
One can use it to archive documents in Compact format, and
then use the tool again to convert back to standard PDF for non-
Compact-aware PDF tools. Compression ratios for Compact
format slightly lower than those reported here because of the
space devoted to a new first page that is shown in non-Compact-
aware viewers to point to more information. Other Compact-
aware PDF tools and a Compact-aware PDF viewer are
available there as well. All tools are free. All are implemented
in Java and therefore run on Solaris, Macintosh OS X, Linux,
Windows, and elsewhere.

The general PDF manipulation library used by the compression
tool, the other PDF tools and the viewer is available at the same
web site. It is free and open source.

The “Compact PDF Specification” details the changes to PDF
1.5 in the form of the PDF Reference and is posted there as well.

CONCLUSION
Adobe judiciously adopts new technology for PDF, such as
JPEG2000 and JBIG2. But old PDFs or those generated with
inefficient PDF generators are much larger than they should be.
A tool that postprocesses PDFs can centralize optimization
expertise for all PDF generators, and update legacy PDFs to
current compression technology. Furthermore, now that PDF is
more than 10 years old, it makes sense to reexamine the design
decisions made in the days of 640KB main memories and 80286
processors. Experiments with our tool show that substantial
additional space savings are practical for modern computer
hardware.

ACKNOWLEDGEMENTS
This research was supported by the Digital Libraries Initiative
under grant NSF CA98-17353. Andy McFadden investigated
the two cases where BZip2 wildly outperformed Flate. Derek B.
Noonburg commented on how to make the technology transfer.
Jim Meehan of Adobe emphasized the importance of Fast Web
View for slow network connections.

REFERENCES
[1] Mark Adler. Personal communication.
[2] Adobe Systems Incorporated. "PDF Reference, Third

Edition".
[3] Adobe Systems Incorporated. "Portable Document

Format Reference Manual, Version 1.2", Addison-
Wesley.

[4] Adobe Systems Incorporated. "Adobe Type 1 Font
Format", 1990. Third printing 1993, version 1.1.

[5] Apago. PDFshrink. http://www.apago.com/
[6] CVision. CVista PdfCompressor.

http://www.cvisiontech.com/
[7] L. Peter Deutsch. "RFC 1951: DEFLATE Compressed

Data Format Specification version 1.3", 1996.
[8] Dov Isaacs. "Installing and Configuring Acrobat for Fun

and Profit", PDF Conference, Bethesda, MD, June 2-4,
2003. http://www.planetpdf.com/planetpdf/pdfs/
pdf2k/03e/isaacs_reliablepdf.pdf

[9] James C. King. "PDF Has It Been 10 Years?", Seybold
PDF Summit, Amsterdam, June, 2003.

[10] metaobject. PdfCompress.
http://www.metaobject.com/Products.html#PdfCompress

[11] Thomas A. Phelps and Robert Wilensky. "The
Multivalent Browser: A Platform for New Ideas",
Proceedings of Document Engineering 2001, November
2001, Atlanta, Georgia.

[12] Shlomo Perets. "Reducing the size of your PDFs",
PlanetPDF. http://www.planetpdf.com/
mainpage.asp?webpageid=1519

[13] Steve Probets and David Brailsford. "Substituting
outline fonts for bitmap fonts in archived PDF files",
Software--Practice and Experience, Volume 33, Number
9, July 2003.

[14] William Pugh. "Compressing Java Class Files", ACM
SIGPLAN Conference on Programming Language
Design and Implementation, May 2–4, 1999, pages 247-
258.

[15] Julian Seward. "The bzip2 and libbzip2 official home
page". http://sources.redhat.com/bzip2/

[16] Michael Still, editor. PDF Database.
http://www.stillhq.com/pdfdb/db.html

